Pro-Inflammatory S100A8 and S100A9 Proteins: Self-Assembly into Multifunctional Native and Amyloid Complexes
نویسندگان
چکیده
S100A8 and S100A9 are EF-hand Ca(2+) binding proteins belonging to the S100 family. They are abundant in cytosol of phagocytes and play critical roles in numerous cellular processes such as motility and danger signaling by interacting and modulating the activity of target proteins. S100A8 and S100A9 expression levels increased in many types of cancer, neurodegenerative disorders, inflammatory and autoimmune diseases and they are implicated in the numerous disease pathologies. The Ca(2+) and Zn(2+)-binding properties of S100A8/A9 have a pivotal influence on their conformation and oligomerization state, including self-assembly into homo- and heterodimers, tetramers and larger oligomers. Here we review how the unique chemical and conformational properties of individual proteins and their structural plasticity at the quaternary level account for S100A8/A9 functional diversity. Additional functional diversification occurs via non-covalent assembly into oligomeric and fibrillar amyloid complexes discovered in the aging prostate and reproduced in vitro. This process is also regulated by Ca(2+)and Zn(2+)-binding and effectively competes with the formation of the native complexes. High intrinsic amyloid-forming capacity of S100A8/A9 proteins may lead to their amyloid depositions in numerous ailments characterized by their elevated expression patterns and have additional pathological significance requiring further thorough investigation.
منابع مشابه
S100A8/A9 and S100A9 reduce acute lung injury
S100A8 and S100A9 are myeloid cell-derived proteins that are elevated in several types of inflammatory lung disorders. Pro- and anti-inflammatory properties are reported and these proteins are proposed to activate TLR4. S100A8 and S100A9 can function separately, likely through distinct receptors but a systematic comparison of their effects in vivo are limited. Here we assess inflammation in mur...
متن کاملAmyloid Formation by the Pro-Inflammatory S100A8/A9 Proteins in the Ageing Prostate
BACKGROUND The conversion of soluble peptides and proteins into polymeric amyloid structures is a hallmark of many age-related degenerative disorders, including Alzheimer's disease, type II diabetes and a variety of systemic amyloidoses. We report here that amyloid formation is linked to another major age-related phenomenon--prostate tissue remodelling in middle-aged and elderly men. METHODOL...
متن کاملS100A proteins in the pathogenesis of experimental corneal neovascularization
PURPOSE The S100A protein family is involved in various inflammatory processes. Two of its members, S100A4 and A13, are thought to be pro-angiogenic in tumor development. This study examines whether S100A proteins are involved in the pathogenesis of inflammation-associated corneal neovascularization (CorNV). METHODS We used 10-0 nylon suture--(S) or chemical burn (CB)--induced CorNV models fo...
متن کاملAggregation of Human S100A8 and S100A9 Amyloidogenic Proteins Perturbs Proteostasis in a Yeast Model
Amyloid aggregates of the calcium-binding EF-hand proteins, S100A8 and S100A9, have been found in the corpora amylacea of patients with prostate cancer and may play a role in carcinogenesis. Here we present a novel model system using the yeast Saccharomyces cerevisiae to study human S100A8 and S100A9 aggregation and toxicity. We found that S100A8, S100A9 and S100A8/9 cotransfomants form SDS-res...
متن کاملProtein synthesis of the pro-inflammatory S100A8/A9 complex in plasmacytoid dendritic cells and cell surface S100A8/A9 on leukocyte subpopulations in systemic lupus erythematosus
INTRODUCTION Systemic lupus erythematosus (SLE) is an autoimmune disease with chronic or episodic inflammation in many different organ systems, activation of leukocytes and production of pro-inflammatory cytokines. The heterodimer of the cytosolic calcium-binding proteins S100A8 and S100A9 (S100A8/A9) is secreted by activated polymorphonuclear neutrophils (PMNs) and monocytes and serves as a se...
متن کامل